Weighted Littlewood-Paley Theory and Exponential-Square Integrability, Ediția 1924Springer Science & Business Media, 2008 - 224 pagini Littlewood-Paley theory is an essential tool of Fourier analysis, with applications and connections to PDEs, signal processing, and probability. It extends some of the benefits of orthogonality to situations where orthogonality doesn’t really make sense. It does so by letting us control certain oscillatory infinite series of functions in terms of infinite series of non-negative functions. Beginning in the 1980s, it was discovered that this control could be made much sharper than was previously suspected. The present book tries to give a gentle, well-motivated introduction to those discoveries, the methods behind them, their consequences, and some of their applications. |
Din interiorul cărții
Rezultatele 6 - 10 din 15
Ne pare rău, conținutul acestei pagini este restricționat.
Ne pare rău, conținutul acestei pagini este restricționat.
Ne pare rău, conținutul acestei pagini este restricționat.
Ne pare rău, conținutul acestei pagini este restricționat.
Ne pare rău, conținutul acestei pagini este restricționat.
Cuprins
Some Assumptions | 1 |
An Elementary Introduction | 9 |
Exponential Square 39 | 40 |
Many Dimensions Smoothing | 69 |
The Calderón Reproducing Formula I | 85 |
The Calderón Reproducing Formula II | 101 |
The Calderón Reproducing Formula III | 129 |
Schrödinger Operators 145 | 144 |
Orlicz Spaces | 161 |
Goodbye to GoodX | 189 |
A Fourier Multiplier Theorem | 197 |
VectorValued Inequalities | 203 |
Random Pointwise Errors | 213 |
219 | |
222 | |
Some Singular Integrals | 151 |
Alte ediții - Afișează-le pe toate
Weighted Littlewood-Paley Theory and Exponential-Square Integrability Michael Wilson Previzualizare limitată - 2007 |