Imagini ale paginilor
PDF
ePub

We may compare the disseminated graphite to that which we find in those districts of Canada in which Silurian and Devonian bituminous shales and limestones have been metamorphosed and converted into graphitic rocks not very dissimilar to those in the less altered portions of the Laurentian. * In like manner it seems probable that the numerous reticulating veins of graphite may have been formed by the segregation of bituminous matter into fissures and planes of least resistance, in the manner in which such veins occur in modern bituminous limestones and shales. Such bituminous veins occur in the Lower Carboniferous limestone and shale of Dorchester and Hillsborough, New Brunswick, with an arrangement very similar to that of the veins of graphite ; and in the Quebec rocks of Point Levi, veins attaining to a thickness of more than a foot, are filled with a coaly matter having a transverse columnar structure, and regarded by Logan and Hunt as an altered bitumen. These palæozoic analogies would lead us to infer that the larger part of the Laurentian graphite falls under the second class of deposits above mentioned, and that, if of vegetable origin, the organic matter must have been thoroughly disintegrated and bituminised before it was changed into graphite. This would also give a probability that the vegetation implied was aquatic, or at least that it was accumulated under water.

Dr. Hunt has, however, observed an indication of terrestrial vegetation, or at least of subaërial decay, in the great beds of Laurentian iron-ore. These, if formed in the same manner as more modern deposits of this kind, would imply the reducing and solvent action of substances produced in the decay of plants. In this case such great ore-beds as that of Hull, on the Ottawa, seventy

Granby, Melbourne, Owl's Head, &c., “Geology of Canada,” 1863,

P. 599.

feet thick, or that near Newborough, two hundred feet thick,* must represent a corresponding quantity of vegetable matter which has totally disappeared. It may be added that similar demands on vegetable matter as a deoxidising agent are made by the beds and veins of metallic sulphides of the Laurentian, though some of the latter are no doubt of later date than the Laurentian rocks themselves.

It would be very desirable to confirm such conclusions as those above deduced by the evidence of actual microscopic structure. It is to be observed, however, that when, in more modern sediments, Algæ have been converted into bituminous matter, we cannot ordinarily obtain any structural evidence of the origin of such bitumen, and in the graphitic slates and limestones derived from the metamorphosis of such rocks no organic structure remains. It is true that, in certain bituminous shales and limestones of the Silurian system, shreds of organic tissue can sometimes be detected, and in some cases, as in the Lower Silurian limestone of the La Cloche Mountains in Canada, the pores of brachiopodous shells and the cells of corals have been penetrated by black bituminous matter, forming what may be regarded as natural injections, sometimes of much beauty. In correspondence with this, while in some Laurentian graphitic rocks, as, for instance, in the compact graphite of Clarendon, the carbon presents a curdled appearance due to segregation, and precisely similar to that of the bitumen in more modern bituminous rocks, I can detect in the graphitic limestones occasional fibrous structures which may be remains of plants, and in some specimens vermicular lines, which I believe to be tubes of Eozoon penetrated by matter once bituminous, but now in the state of graphite.

*“ Geology of Canada,” 1863.

When palæozoic land-plants have been converted into graphite, they sometimes perfectly retain their structure. Mineral charcoal, with structure, exists in the graphitic coal of Rhode Island. The fronds of ferns, with their minutest veins perfect, are preserved in the Devonian shales of St. John, in the state of graphite; and in the same formation there are trunks of Conifers (Dadoxylon Ouangondianum) in which the material of the cell-walls has been converted into graphite, while their cavities have been filled with calcareous spar and quartz, the finest structures being preserved quite as well as in comparatively unaltered specimens from the coal-formation.* No structures so perfect have as yet been detected in the Laurentian, though in the largest of the three graphitic beds at St. John there appear to be fibrous structures, which I believe may indicate the existence of land-plants. This graphite is composed of contorted and slickensided laminæ, much like those of some bituminous shales and coarse coals; and in these are occasional small pyritous masses which show hollow carbonaceous fibres, in some cases presenting obscure indications of lateral pores. I regard these indications, however, as uncertain; and it is not as yet fully ascertained that these beds at St. John are on the same geological horizon with the Lower Laurentian of Canada, though they certainly underlie the Primordial series of the Acadian group, and are separated from it by beds having the character of the Huronian.

There is thus no absolute impossibility that distinct organic tissues may be found in the Laurentian graphite, if formed from land-plants, more especially if any plants existed at that time having true woody or vascular tissues; but it cannot with certainty be affirmed that such tissues

*“ Acadian Geology,” p. 535. In calcified specimens the structures remain in the graphite after decalcification by an acid.

have been found. It is possible, however, that in the Laurentian period the vegetation of the land may have consisted wholly of cellular plants, as, for example, mosses and lichens; and if so, there would be comparatively little hope of the distinct preservation of their forms or tissues, or of our being able to distinguish the remains of land-plants from those of Algæ.

We may sum up these facts and considerations in the following statements : First, that somewhat obscure traces of organic structure can be detected in the Laurentian graphite; secondly, that the general arrangement and microscopic structure of the substance corresponds with that of the carbonaceous and bituminous matters in marine formations of more modern date ; thirdly, that if the Laurentian graphite has been derived from vegetable matter, it has only undergone a metamorphosis similar in kind to that which organic matter in metamorphosed sediments of later age has experienced; fourthly, that the association of the graphitic matter with organic limestone, beds of iron-ore, and metallic sulphides greatly strengthens the probability of its vegetable origin; fifthly, that when we consider the immense thickness and extent of the Eozoonal and graphitic limestones and iron-ore deposits of the Laurentian, if we admit the organic origin of the limestone and graphite, we must be prepared to believe that the life of that early period, though it may have existed under low forms, was most copiously developed, and that it equalled, perhaps surpassed, in its results, in the way of geological accumulation, that of any subsequent period.

Many years ago, at the meeting of the American Association in Albany, the writer was carrying into the room of the Geological Section a mass of fossil wood from the Devonian of Gaspé, when he met the late Professor Agassiz, and remarked that the specimen was the remains of a Devonian tree contemporaneous with his fishes of that age. “How I wish I could sit under its shade!” was the smiling reply of the great zoologist; and when we think of the great accumulations of Laurentian carbon, and that we are entirely ignorant of the forms and structures of the vegetation which produced it, we can scarcely suppress a feeling of disappointment. Some things, however, we can safely infer from the facts that are known, and these it may be well to mention.

The climate and atmosphere of the Laurentian may have been well adapted for the sustenance of vegetable life. We can scarcely doubt that the internal heat of the earth still warmed the waters of the sea, and these warm waters must have diffused great quantities of mists and vapours over the land, giving a moist and equable if not a very clear atmosphere. The vast quantities of carbon dioxide afterwards sealed up in limestones and carbonaceous beds must also have still floated in the atmosphere and must have supplied abundance of the carbon, which constitutes the largest ingredient in vegetable tissues. Under these circumstances the whole world must have resembled a damp, warm greenhouse, and plants loving such an atmosphere could have grown luxuriantly. In these circumstances the lower forms of aquatic vegetation and those that love damp, warm air and wet soil would have. been at home.

If we ask more particularly what kinds of plants might be expected to be introduced in such circumstances, we may obtain some information from the vegetation of the succeeding Palæozoic age, when such conditions still continued to a modified extent. In this period the clubmosses, ferns, and mare's-tails engrossed the world and grew to sizes and attained degrees of complexity of structure not known in modern times. In the previous Laurentian age something similar may have happened to Algæ, to Fungi, to Lichens, to Liverworts, and Mosses. The Algæ may have attained to gigantic dimensions, and

с

« ÎnapoiContinuați »