Imagini ale paginilor
PDF
ePub

The second law may be stated in these terms: an atom-gramme of metal carries with it into electrolysis a quantity of electricity proportionate to its valency.1

Numerous experiments have made known the total mass of hydrogen capable of carrying one coulomb, and it will therefore be possible to estimate the charge of an ion of hydrogen if the number of atoms of hydrogen in a given mass be known. This last figure is already furnished by considerations derived from the kinetic theory, and agrees with the one which can be deduced from the study of various phenomena. The result is that an ion of hydrogen having a mass of 1.3 × 10-24 grammes bears a charge of 13 x 10-20 electromagnetic units; and the second law will immediately enable the charge of any other ion to be similarly estimated.

The measurements of conductivity, joined to certain considerations relating to the differences of concentration which appear round the electrode in electrolysis, allow the speed of the ions to be

1 The valency or atomicity of an element may be defined as the power it possesses of entering into compounds in a certain fixed proportion. As hydrogen is generally taken as the standard, in practice the valency of an atom is the number of hydrogen atoms it will combine with or replace. Thus chlorine and the rest of the halogens, the atoms of which combine with one atom of hydrogen, are called univalent, oxygen a bivalent element, and so on.-ED.

calculated. Thus, in a liquid containing th of a hydrogen-ion per litre, the absolute speed of an ion would be ths of a millimetre per second in a field where the fall of potential would be 1 volt per centimetre. Sir Oliver Lodge, who has made direct experiments to measure this speed, has obtained a figure very approximate to this. This value is very small compared to that which we shall meet with in gases.

Another consequence of the laws of Faraday, to which, as early as 1881, Helmholtz drew attention, may be considered as the starting-point of certain new doctrines we shall come across later.

Helmholtz says: "If we accept the hypothesis that simple bodies are composed of atoms, we are obliged to admit that, in the same way, electricity, whether positive or negative, is composed of elementary parts which behave like atoms of electricity."

The second law seems, in fact, analogous to the law of multiple proportions in chemistry, and it shows us that the quantities of electricity carried vary from the simple to the double or treble, according as it is a question of a uni-, bi-, or trivalent metal; and as the chemical law leads up to the conception of the material atom, so does the electrolytic law suggest the idea of an electric atom.

CHAPTER VI

THE ETHER

§ 1. THE LUMINIFEROUS ETHER

IT is in the works of Descartes that we find the first idea of attributing those physical phenomena which the properties of matter fail to explain to some subtle matter which is the receptacle of the energy of the universe.

In our times this idea has had extraordinary luck. After having been eclipsed for two hundred years by the success of the immortal synthesis of Newton, it gained an entirely new splendour with Fresnel and his followers. Thanks to their admirable discoveries, the first stage seemed accomplished, the laws of optics were represented by a single hypothesis, marvellously fitted to allow us to anticipate unknown phenomena, and all these anticipations were subsequently fully verified by experiment. But the researches of Faraday, Maxwell, and Hertz authorized still greater ambitions; and it really seemed that this medium, to which it was agreed to give the

ancient name of ether, and which had already explained light and radiant heat, would also be sufficient to explain electricity. Thus the hope

began to take form that we might succeed in demonstrating the unity of all physical forces. It was thought that the knowledge of the laws relating to the inmost movements of this ether might give us the key to all phenomena, and might make us acquainted with the method in which energy is stored up, transmitted, and parcelled out in its external manifestations.

We cannot study here all the problems which are connected with the physics of the ether. To do this a complete treatise on optics would have to be written and a very lengthy one on electricity. I shall simply endeavour to show rapidly how in the last few years the ideas relative to the constitution of this ether have evolved, and we shall see if it be possible without self-delusion to imagine that a single medium can really allow us to group all the known facts in one comprehensive arrangement.

As constructed by Fresnel, the hypothesis of the luminous ether, which had so great a struggle at the outset to overcome the stubborn resistance of the partisans of the then classic theory of emission, seemed, on the contrary, to possess in the sequel an unshakable strength. Lamé, though a prudent mathematician, wrote: "The existence of the ethereal

fluid is incontestably demonstrated by the propagation of light through the planetary spaces, and by the explanation, so simple and so complete, of the phenomena of diffraction in the wave theory of light"; and he adds: "The laws of double refraction prove with no less certainty that the ether exists in all diaphanous media." Thus the ether was no longer an hypothesis, but in some sort a tangible reality. But the ethereal fluid of which the existence was thus proclaimed has some singular properties.

Were it only a question of explaining rectilinear propagation, reflexion, refraction, diffraction, and interferences notwithstanding grave difficulties at the outset and the objections formulated by Laplace and Poisson (some of which, though treated somewhat lightly at the present day, have not lost all value), we should be under no obligation to make any hypothesis other than that of the undulations of an elastic medium, without deciding in advance anything as to the nature and direction of the vibrations.

This medium would, naturally-since it exists in what we call the void-be considered as imponderable. It may be compared to a fluid of negligible masssince it offers no appreciable resistance to the motion of the planets-but is endowed with an enormous elasticity, because the velocity of the propagation of light is considerable. It must be capable of penetrating into all transparent bodies, and of retaining

« ÎnapoiContinuă »