Imagini ale paginilor
PDF
ePub

or, again, by the physiologist desirous of understanding the mechanism of the gaseous and liquid exchanges between the cell and the outer medium, cause new chapters in physics to appear, and suggest researches adapted to the necessities of actual life.

The evolution of the different parts of physics does not, however, take place with equal speed, because the circumstances in which they are placed are not equally favourable. Sometimes a whole series of questions will appear forgotten, and will live only with a languishing existence; and then some accidental circumstance suddenly brings them new life, and they become the object of manifold labours, engross public attention, and invade nearly the whole domain of science.

We have in our own day witnessed such a spectacle. The discovery of the X rays—a discovery which physicists no doubt consider as the logical outcome of researches long pursued by a few scholars working in silence and obscurity on an otherwise much neglected subject-seemed to the public eye to have inaugurated a new era in the history of physics. If, as is the case, however, the extraordinary scientific movement provoked by Röntgen's sensational experiments has a very remote origin, it has, at least, been singularly quickened by the favourable conditions created by the interest aroused in its astonishing applications to radiography.

A lucky chance has thus hastened an evolution

already taking place, and theories previously outlined have received a singular development. Without wishing to yield too much to what may be considered a whim of fashion, we cannot, if we are to note in this book the stage actually reached in the continuous march of physics, refrain from giving a clearly preponderant place to the questions suggested by the study of the new radiations. At the present time it is these questions which move us the most; they have shown us unknown horizons, and towards the fields recently opened to scientific activity the daily increasing crowd of searchers rushes in rather disorderly fashion.

One of the most interesting consequences of the recent discoveries has been to rehabilitate in the eyes of scholars, speculations relating to the constitution of matter, and, in a more general way, metaphysical problems. Philosophy has, of course, never been completely separated from science; but in times past many physicists dissociated themselves from studies which they looked upon as unreal word-squabbles, and sometimes not unreasonably abstained from joining in discussions which seemed to them idle and of rather puerile subtlety. They had seen the ruin of most of the systems built up a priori by daring philosophers, and deemed it more prudent to listen to the advice given by Kirchhoff and "to substitute the description of facts for a sham explanation of nature."

It should however be remarked that these physicists somewhat deceived themselves as to the value of their caution, and that the mistrust they manifested towards philosophical speculations did not preclude their admitting, unknown to themselves, certain axioms which they did not discuss, but which are, ̈ properly speaking, metaphysical conceptions. They were unconsciously speaking a language taught them by their predecessors, of which they made no attempt to discover the origin. It is thus that it was readily considered evident that physics must necessarily some day re-enter the domain of mechanics, and thence it was postulated that everything in nature is due to movement. We, further, accepted the principles of the classical mechanics without discussing their legitimacy.

This state of mind was, even of late years, that of the most illustrious physicists. It is manifested, quite sincerely and without the slightest reserve, in all the classical works devoted to physics. Thus Verdet, an illustrious professor who has had the greatest and most happy influence on the intellectual formation of a whole generation of scholars, and whose works are even at the present day very often consulted, wrote: "The true problem of the physicist is always to reduce all phenomena to that which seems to us the simplest and clearest, that is to say, to movement." In his celebrated course of lectures at l'École Polytechnique, Jamin likewise said: "Physics

will one day form a chapter of general mechanics;" and in the preface to his excellent course of lectures on physics, M. Violle, in 1884, thus expresses himself: "The science of nature tends towards mechanics

by a necessary evolution, the physicist being able to establish solid theories only on the laws of movement." The same idea is again met with in the words of Cornu in 1896: "The general tendency should be to show how the facts observed and the phenomena measured, though first brought together by empirical laws, end, by the impulse of successive progressions, in coming under the general laws of rational mechanics;" and the same physicist showed clearly that in his mind this connexion of phenomena with mechanics had a deep and philosophical reason, when, in the fine discourse pronounced by him at the opening ceremony of the Congrès de Physique in 1900, he exclaimed: "The mind of Descartes soars over modern physics, or rather, I should say, he is their luminary. The further we penetrate into the knowledge of natural phenomena, the clearer and the more developed becomes the bold Cartesian conception regarding the mechanism of the universe. There is nothing in the physical world but matter and movement."

If we adopt this conception, we are led to construct mechanical representations of the material world, and to imagine movements in the different parts of bodies capable of reproducing all the mani

festations of nature. The kinematic knowledge of these movements, that is to say, the determination of the position, speed, and acceleration at a given moment of all the parts of the system, or, on the other hand, their dynamical study, enabling us to know what is the action of these parts on each other, would then be sufficient to enable us to foretell all that can occur in the domain of nature.

This was the great thought clearly expressed by the Encyclopædists of the eighteenth century; and if the necessity of interpreting the phenomena of electricity or light led the physicists of last century to imagine particular fluids which seemed to obey with some difficulty the ordinary rules of mechanics, these physicists still continued to retain their hope in the future, and to treat the idea of Descartes as an ideal to be reached sooner or later.

Certain scholars-particularly those of the English School-outrunning experiment, and pushing things to extremes, took pleasure in proposing very curious mechanical models which were often strange images of reality. The most illustrious of them, Lord Kelvin, may be considered as their representative type, and he has himself said: "It seems to me that the true sense of the question, we or do we not understand a particular subject in physics? is-Can we make a mechanical model which corresponds to it? I am never satisfied so long as have been unable to make a mechanical model of the

Do

7

« ÎnapoiContinuă »