Imagini ale paginilor
PDF
ePub

THE RESPIRATORY CURRENT.

81

Again, if, when a crayfish is resting quietly in the water, a little coloured fluid is allowed to run down towards the posterior opening of the branchial chamber, it will very soon be driven out from the anterior aperture, with considerable force, in a long stream. In fact, as the scaphognathite vibrates not less than three or four times in a second, the water in the funnel-shaped front passage of the branchial cavity is incessantly baled out; and, as fresh water flows in from behind to make up the loss, a current is kept constantly flowing over the gills. The rapidity of this current naturally depends on the more or less quick repetition of the strokes of the scaphognathite; and hence, the activity of the respirary function can be accurately adjusted to the wants of the economy. Slow working of the scaphognathite answers to ordinary breathing in ourselves, quick working to panting.

A further self-adjustment of the respiratory apparatus is gained by the attachment of the six gills to the basal joints of the legs. For, when the animal exerts its muscles in walking, these gills are agitated, and thus not only bring their own surfaces more largely in contact with the water, but produce the same effect upon the other gills.

The constant oxidation which goes on in all parts of the body not only gives rise to carbonic acid; but, so far as it affects the proteinaceous constituents, it produces

covered with rapidly vibrating filaments, or cilia, by means of which a current of water is kept continually flowing over the gills, but there are none of these in the crayfish. The same object is attained, however, in another way. The anterior boundary of the branchial chamber corresponds with the cervical groove, which, as has been seen, curves downwards and then forwards, until it terminates at the sides of the space occupied by the jaws. If the branchiostegite is cut away along the groove, it will be found that it is attached to the sides of the head, which project a little beyond the anterior part of the thorax, so that there is a depression behind the sides of the head-just as there is a depression, behind a man's jaw, at the sides of the neck. Between this

depression in front, the walls of the thorax internally, the branchiostegite externally, and the bases of the forceps and external foot-jaws below, a curved canal is included, by which the branchial cavity opens forwards as by a funnel. Attached to the base of the second maxilla there is a wide curved plate (fig. 4, 6) which fits against the projection of the head, as a shirt collar might do, to carry out our previous comparison; and this scoopshaped plate (termed the scaphognathite), which is concave forwards and convex backwards, can be readily moved backwards and forwards.

If a living crayfish is taken out of the water, it will be found that, as the water drains away from the branchial cavity, bubbles of air are forced out of its anterior opening.

THE RESPIRATORY CURRENT.

81

Again, if, when a crayfish is resting quietly in the water, a little coloured fluid is allowed to run down towards the posterior opening of the branchial chamber, it will very soon be driven out from the anterior aperture, with considerable force, in a long stream. In fact, as the scaphognathite vibrates not less than three or four times in a second, the water in the funnel-shaped front passage of the branchial cavity is incessantly baled out; and, as fresh water flows in from behind to make up the loss, a current is kept constantly flowing over the gills. The rapidity of this current naturally depends on the more or less quick repetition of the strokes of the scaphognathite; and hence, the activity of the respirary function can be accurately adjusted to the wants of the economy. Slow working of the scaphognathite answers to ordinary breathing in ourselves, quick working to panting.

T

A further self-adjustment of the respiratory apparatus is gained by the attachment of the six gills to the basal joints of the legs. For, when the animal exerts its muscles in walking, these gills are agitated, and thus not only bring their own surfaces more largely in contact with the water, but produce the same effect upon the other gills.

The constant oxidation which goes on in all parts of the body not only gives rise to carbonic acid; but, so far as it affects the proteinaceous constituents, it produces

compounds which contain nitrogen, and these, like other waste products, must be eliminated. In the higher animals, such waste products take the form of urea, uric acid, hippuric acid, and the like; and are got rid of by the kidneys. We may, therefore, expect to find some organ which plays the part of a kidney in the crayfish ; but the position of the structure, which there is much reason for regarding as the representative of the kidney, is so singular that very different interpretations have been put upon it.

On the basal joint of each antenna it is easy to see a small conical eminence with an opening on the inner side of its summit (fig. 18). The aperture (x) leads by a short canal into a spacious sac, with extremely delicate walls (s), which is lodged in the front part of the head, in front of and below the cardiac division of the stomach (cs). Beneath this, in a sort of recess, which corresponds with the epistoma, and with the base of the antenna, there is a discoidal body of a dull green colour, in shape somewhat like one of the fruits of the mallow, which is known as the green gland (gg). The sac narrows below like a wide funnel, and the edges of its small end are continuous with the walls of the green gland; they surround an aperture which leads into the interior of the latter structure, and conveys its products into the sac, whence they are excreted by the opening in the antennary papilla. The green gland is said to contain a substance termed guanin (so named because it is found in the guano which is the accumulated

THE RENAL ORGAN.

83

excrement of birds), a nitrogenous body analogous in some respects to uric acid, but less highly oxidated;

[graphic][subsumed][ocr errors][merged small][subsumed][subsumed][subsumed][subsumed][subsumed][merged small][ocr errors]

FIG. 18.—Astacus fluviatilis.-A, the anterior part of the body, with the dorsal portion of the carapace removed to show the position of the green glands; B, the same, with the left side of the carapace removed; C, the green gland removed from the body (all × 2). ag, left anterior gastric muscle; c, circumœsophageal commissures; cs, cardiac portion of stomach; gg. green gland, exposed in A on the left side by the removal of its sac; ima, intermaxillary or cephalic apodeme; as, oesophagus seen in transverse section in A, the stomach being removed; s, sac of green gland; x, bristle passed from the aperture in the basal joint of the antenna into the sac.

and if this be the case, there can be little doubt that the green gland represents the kidney, and its secretion

« ÎnapoiContinuă »