Imagini ale paginilor
PDF
ePub
[ocr errors][subsumed]

CRAYFISHES AND PIGS.

45

Van

collected in vast numbers, and sold for medicinal purposes as a remedy against the stone, among other diseases. Their real utility, inasmuch as they consist almost entirely of carbonate of lime, with a little phosphate of lime and animal matter, is much the same as that of chalk, or carbonate of magnesia. It was, formerly, a current belief that crayfishes grow poor at the time of new moon, and fat at that of full moon; and, perhaps, there may be some foundation for the notion, considering the nocturnal habits of the animals. Helmont, a great dealer in wonders, is responsible for the story that, in Brandenburg, where there is a great abundance of crayfishes, the dealers were obliged to transport them to market by night, lest a pig should run under the cart. For if such a misfortune should happen, every crayfish would be found dead in the morning: "Tam exitialis est porcus cancro." Another author improves the story, by declaring that the steam of a pig-stye, or of a herd of swine, is instantaneously fatal to crayfish. On the other hand, the smell of putrifying crayfish, which is undoubtedly of the strongest, was said to drive even moles out of their burrows.

[ocr errors][merged small]

THE PHYSIOLOGY OF THE CRAYFISH. THE MECHANISM BY WHICH THE PARTS OF THE LIVING ENGINE ARE SUPPLIED NECESSARY FOR THEIR MAIN

WITH THE

MATERIALS

TENANCE AND GROWTH.

AN analysis of such a sketch of the "Natural History of the Crayfish" as is given in the preceding chapter, shows that it provides brief and general answers to three questions. First, what is the form and structure of the animal, not only when adult, but at different stages of its growth? Secondly, what are the various actions of which it is capable? Thirdly, where is it found? If we carry our investigations further, in such a manner as to give the fullest attainable answers to these questions, the knowledge thus acquired, in the case of the first question, is termed the Morphology of the crayfish; in the case of the second question, it constitutes the Physiology of the animal; while the answer to the third question would represent what we know of its Distribution or Chorology. There remains a fourth problem, which can hardly be regarded as seriously under discussion, so long as knowledge has advanced no further than the Natural History stage; the question, namely,

TELEOLOGY AND PHYSIOLOGY.

47

how all these facts comprised under Morphology, Physiology, and Chorology have come to be what they are; and the attempt to solve this problem leads us to the crown of Biological effort, Etiology. When it supplies answers to all the questions which fall under these four heads, the Zoology of Crayfish will have said its last word.

As it matters little in what order we take the first three questions, in expanding Natural History into Zoology, we may as well follow that which accords with the history of science. After men acquired a rough and general knowledge of the animals about them, the next thing which engaged their interest was the discovery in these animals of arrangements by which results, of a kind similar to those which their own ingenuity effects through mechanical contrivances, are brought about. They observed that animals perform various actions; and, when they looked into the disposition and the powers of the parts by which these actions are performed, they found that these parts presented the characters of an apparatus, or piece of mechanism, the action of which could be deduced from the properties and connections of its constituents, just as the striking of a clock can be deduced from the properties and connections of its weights and wheels.

Under one aspect, the result of the search after the rationale of animal structure thus set afoot is Teleology; or the doctrine of adaptation to purpose. Under another

aspect, it is Physiology; so far as Physiology consists in the elucidation of complex vital phenomena by deduction from the established truths of Physics and Chemistry, or from the elementary properties of living matter.

We have seen that the crayfish is a voracious and indiscriminate feeder; and we shall be safe in assuming that, if duly supplied with nourishment, a full-grown crayfish will consume several times its own weight of food in the course of the year. Nevertheless, the increase of the animal's weight at the end of that time is, at most, a small fraction of its total weight; whence it is quite clear, that a very large proportion of the food taken into the body must, in some shape or other, leave it again. In the course of the same period, the crayfish absorbs a very considerable quantity of oxygen, supplied by the atmosphere to the water which it inhabits; while it gives out, into that water, a large amount of carbonic acid, and a larger or smaller quantity of nitrogenous and other excrementitious matters. From this point of view, the crayfish may be regarded as a kind of chemical manufactory, supplied with certain alimentary raw materials, which it works up, transforms, and gives out in other shapes. And the first physiological problem which offers itself to us is the mode of operation of the apparatus contained in this factory, and the extent to which the products of its activity are to be accounted for by reasoning from known physical and chemical principles.

THE PROCESS OF FEEDING.

49

We have learned that the food of the crayfish is made up of very diverse substances, both animal and vegetable; but, so far as they are competent to nourish the animal permanently, these matters all agree in containing a peculiar nitrogenous body, termed protein, under one of its many forms, such as albumen, fibrin, and the like. With this may be associated fatty matters, starchy and saccharine bodies, and various earthy salts. And these, which are the essential constituents of the food, may be, and usually are, largely mixed up with other substances, such as wood, in the case of vegetable food, or skeletal and fibrous parts, in the case of animal prey, which are of little or no utility to the crayfish.

The first step in the process of feeding, therefore, is to reduce the food to such a state, that the separation of its nutritive parts, or those which can be turned to account, from its innutritious, or useless, constituents, may be facilitated. And this preliminary operation is the subdivision of the food into morsels of a convenient size for introduction into that part of the machinery in which the extraction of the useful products is performed.

The food may be seized by the pincers, or by the anterior chelate ambulatory limbs; and, in the former case, it is usually, if not always, transferred to the first, or second, or both of the anterior pairs of ambulatory limbs. These grasp the food, and, tearing it into pieces of the proper dimensions, thrust them between the external maxillipedes, which are, at the same time,

« ÎnapoiContinuă »