Imagini ale paginilor
PDF
ePub

menters have failed where M. Blondlot and his pupils have succeeded may constitute a presumption, but cannot be regarded as a demonstrative argument. Hence we must still wait; it is exceedingly possible that the illustrious physicist of Nancy may succeed in discovering objective actions of the N rays which shall be indisputable, and may thus establish on a firm basis a discovery worthy of those others which have made his name so justly celebrated.

According to M. Blondlot the N rays can be polarised, refracted, and dispersed, while they have wavelengths comprised within 0030 μ and '0760 μ-that is to say, between an eighth and a fifth of that found for the extreme ultra-violet rays. They might be, perhaps, simply rays of a very short period. Their existence, stripped of the parasitical and somewhat singular properties sought to be attributed to them, would thus appear natural enough. It would, moreover, be extremely important, and lead, no doubt, to most curious applications; it can be conceived, in fact, that such rays might serve to reveal what occurs in those portions of matter whose too minute dimensions escape microscopic examination account of the phenomena of diffraction.

on

From whatever point of view we look at it, and whatever may be the fate of the discovery, the history of the N rays is particularly instructive, and must give food for reflection to those interested in questions of scientific methods.

§ 6. THE ETHER AND GRAVITATION

The striking success of the hypothesis of the ether in optics has, in our own days, strengthened the hope of being able to explain, by an analogous representation, the action of gravitation.

For a long time, philosophers who rejected the idea that ponderability is a primary and essential quality of all bodies have sought to reduce their weight to pressures exercised in a very subtle fluid. This was the conception of Descartes, and was perhaps the true idea of Newton himself. Newton points out, in many passages, that the laws he had discovered were independent of the hypotheses that could be formed on the way in which universal attraction was produced, but that with sufficient experiments the true cause of this attraction might one day be reached. In the preface to the second edition of the Optics he writes: "To prove that I have not considered weight as a universal property of bodies, I have added a question as to its cause, preferring this form of question because my interpretation does not entirely satisfy me in the absence of experiment"; and he puts the question in this shape : "Is not this medium (the ether) more rarefied in the interior of dense bodies like the sun, the planets, the comets, than in the empty spaces which separate them? Passing from these bodies to great distances, does it not become continually denser, and in that

way does it not produce the weight of these great bodies with regard to each other and of their parts with regard to these bodies, each body tending to leave the most dense for the most rarefied parts?"

Evidently this view is incomplete, but we may endeavour to state it precisely. If we admit that this medium, the properties of which would explain the attraction, is the same as the luminous ether, we may first ask ourselves whether the action of gravitation is itself also due to oscillations. Some authors have endeavoured to found a theory on this hypothesis, but we are immediately brought face to face with very serious difficulties. Gravity appears, in fact, to present quite exceptional characteristics. No agent, not even those which depend upon the ether, such as light and electricity, has any influence on its action or its direction. All bodies are, so to speak, absolutely transparent to universal attraction, and no experiment has succeeded in demonstrating that its propagation is not instantaneous. From various astronomical observations, Laplace concluded that its velocity, in any case, must exceed fifty million times that of light. It is subject neither to reflection nor to refraction; it is independent of the structure of bodies; and not only is it inexhaustible, but also (as is pointed out, according to M. Hannequin, by an English scholar, James Croll) the distribution of the effects of the attracting force of a mass over the manifold particles which

may successively enter the field of its action in no way diminishes the attraction it exercises on each of them respectively, a thing which is seen nowhere else in nature.

Nevertheless it is possible, by means of certain hypotheses, to construct interpretations whereby the appropriate movements of an elastic medium should explain the facts clearly enough. But these movements are very complex, and it seems almost inconceivable that the same medium could possess simultaneously the state of movement corresponding to the transmission of a luminous phenomenon and that constantly imposed on it by the transmission of gravitation.

Another celebrated hypothesis was devised by Lesage, of Geneva. Lesage supposed space to be overrun in all directions by currents of ultramundane corpuscles. This hypothesis, contested by Maxwell, is interesting. It might perhaps be taken up again in our days, and it is not impossible that the assimilation of these corpuscles to electrons might give a satisfactory image.1

M. Crémieux has recently undertaken experiments directed, as he thinks, to showing that the divergences between the phenomena of gravitation and all the other phenomena in nature are more

1 M. Sagnac (Le Radium, Jan. 1906, p. 14), following perhaps Professors Elster and Geitel, has lately taken up this idea anew.--ED.

apparent than real. Thus the evolution in the heart of the ether of a quantity of gravific energy would not be entirely isolated, and as in the case of all evolutions of all energy of whatever kind, it should provoke a partial transformation into energy of a different form. Thus again the liberated energy of gravitation would vary when passing from one material to another, as from gases into liquids, or from one liquid to a different one.

On this last point the researches of M. Crémieux have given affirmative results: if we immerse in a large mass of some liquid several drops of another not miscible with the first, but of identical density, we form a mass representing no doubt a discontinuity in the ether, and we may ask ourselves whether, in conformity with what happens in all other phenomena of nature, this discontinuity has not a tendency to disappear.

If we abide by the ordinary consequences of the Newtonian theory of potential, the drops should remain motionless, the hydrostatic impulsion forming an exact equilibrium to their mutual attraction. Now M. Crémieux remarks that, as a matter of fact, they slowly approach each other.

Such experiments are very delicate; and with all the precautions taken by the author, it cannot yet be asserted that he has removed all possibility of the action of the phenomena of capillarity nor all possible errors proceeding from extremely slight

« ÎnapoiContinuă »