Imagini ale paginilor
PDF
ePub

may have even ascended out of the water in some of their forms. These comparatively simple cellular and tubular structures, now degraded to the humble position of flat lichens or soft or corky fungi, or slender cellular mosses, may have been so strengthened and modified as to constitute forest-trees. This would be quite in harmony with what is observed in the development of other plants in primitive geological times; and a little later in this history we shall see that there is evidence in the flora of the Silurian of a survival of such forms.

It may be that no geologist or botanist will ever be able to realise these dreams of the past. But, on the other hand, it is quite possible that some fortunate chance may have somewhere preserved specimens of Laurentian plants showing their structure.

In any case we have here presented to us the strange and startling fact that the remarkable arrangement of protoplasmic matter and chlorophyll, which enables the vegetable cell to perform, with the aid of solar light, the miracle of decomposing carbon dioxide and water, and forming with them woody and corky tissues, had already been introduced upon the earth. It has been well said that no amount of study of inorganic nature would ever have enabled any one to anticipate the possibility of the construction of an apparatus having the chemical powers of the living vegetable cell. Yet this most marvellous. structure seems to have been introduced in the full plenitude of its powers in the Laurentian age.

Whether this early Laurentian vegetation was the means of sustaining any animal life other than marine Protozoa, we do not know. It may have existed for its own sake alone, or merely as a purifier of the atmosphere, in preparation for the future introduction of land-animals. The fact that there have existed, even in modern times, oceanic islands rich in vegetation, yet untenanted by the higher forms of animal life, prepares us to believe

that such conditions may have been general or universal in the primeval times we are here considering.

If we ask to what extent the carbon extracted from the atmosphere and stored up in the earth has been, or is likely to be, useful to man, the answer must be that it is not in a state to enable it to be used as mineral fuel. It has, however, important uses in the arts, though at present the supply seems rather in excess of the demand, and it may well be that there are uses of graphite still undiscovered, and to which it will yet be applied.

Finally, it is deserving of notice that, if Laurentian graphite indicates vegetable life, it indicates this in vast profusion. That incalculable quantities of vegetable matter have been oxidised and have disappeared we may believe on the evidence of the vast beds of iron-ore; and, in regard to that preserved as graphite, it is certain that every inch of that mineral must indicate many feet of crude vegetable matter.

It is remarkable that, in ascending from the Laurentian, we do not at first appear to advance in evidences of plant-life. The Huronian age, which succeeded the Laurentian, seems to have been a disturbed and unquiet time, and, except in certain bands of iron-ore and some dark slates coloured with carbonaceous matter, we find in it no evidence of vegetation. In the Cambrian a great subsidence of our continents began, which went on, though with local intermissions and reversals, all through the Siluro-Cambrian or Ordovician time. These times were, for this reason, remarkable for the great abundance and increase of marine animals rather than of land-plants. Still, there are some traces of land vegetation, and we may sketch first the facts of this kind which are known, and then advert to some points relating to the earlier Algæ, or sea-weeds.

An eminent Swedish geologist, Linnarsson, has de

scribed, under the name of Eophyton, certain impressions on old Cambrian rocks in Sweden, and which certainly present very plant-like forms. They want, however, any trace of carbonaceous matter, and seem rather to be grooves or marks cut in clay by the limbs or tails of some aquatic animal, and afterwards filled up and preserved by succeeding deposits. After examining large series of these specimens from Sweden, and from rocks of similar age in Canada, I confess that I have no faith in their vegetable nature.

The oldest plants known to me, and likely to have been of higher grade than Alga, are specimens kindly presented to me by Dr. Alleyne Nicholson, of Aberdeen, and which he had named Buthotrephis Harknessii* and B. radiata. They are from the Skiddaw rocks of Cumberland. On examining these specimens, and others subsequently collected in the same locality by Dr. G. M. Dawson, while convinced by their form and carbonaceous character that they are really plants, I am inclined to refer them not to Algæ, but probably to Rhizocarps. They consist of slender branching stems, with whorls of elongate and pointed leaves, resembling the genus Annularia of the coal formation. I am inclined to believe that both of Nicholson's species are parts of one plant, and for this I have proposed the generic name Protannularia (Fig. 1). Somewhat higher in the Siluro-Cambrian, in the Cincinnati group of America, Lesquereux has found some minute radiated leaves, referred by him to the genus Sphenophyllum,† which is also allied to Rhizocarps. Still more remarkable is the discovery in the same beds of a stem with rhombic areoles or leaf-bases, to which the name Protostigma has been given. If a plant, this may

* "Geological Magazine," 1869.
See figure in next chapter.

Protostigma sigillarioides, Lesquereux.

have been allied to the club-mosses. This seems to be all that we at present know of land-vegetation in the Siluro-Cambrian. So far as the remains go, they indicate the presence of the families of Rhizo

carps and of Lyco

pods.

If we ascend into the Upper Silurian, or Silurian proper, the evidences of land vegetation somewhat increase. In 1859 I described, in "The

Journal of the Geological Society," of London, a remarkable tree from the Lower Erian of Gaspé, under the name Prototaxites, but for which I now prefer the name Nematophyton. When in Lon

[ocr errors][merged small]

don, in 1870, I obtained permission to examine certain specimens of spore-cases or seeds from the Upper Ludlow (Silurian) formation of England, and which had been described by Sir Joseph Hooker under the name Pachytheca. In the same slabs with these I found fragments of fossil wood identical with those of the Gaspé plant. Still later I recognised similar fragments associated also with Pachytheca in the Silurian of Cape Bon Ami, New Brunswick. Lastly, Dr. Hicks has discovered similar wood, and also similar

fruits, in the Denbighshire grits, at the base of the Silurian.*

[graphic]

FIG. 2.-Nematophyton Logani (magnified). Vertical section.

From comparison of this singular wood, the structure of which is represented in Figs. 2, 3, 4, with the débris

[merged small][ocr errors]

FIG. 3.-Nematophyton Logani (magnified). Horizontal section, showing part of one of the radial spaces, with tubes passing into it.

of fossil taxine woods, mineralised after long maceration in water, I was inclined to regard Prototaxites, or, as I

"Journal of the Geological Society," August, 1881.

« ÎnapoiContinuă »