Weighted Littlewood-Paley Theory and Exponential-Square Integrability, Ediția 1924Littlewood-Paley theory is an essential tool of Fourier analysis, with applications and connections to PDEs, signal processing, and probability. It extends some of the benefits of orthogonality to situations where orthogonality doesn’t really make sense. It does so by letting us control certain oscillatory infinite series of functions in terms of infinite series of non-negative functions. Beginning in the 1980s, it was discovered that this control could be made much sharper than was previously suspected. The present book tries to give a gentle, well-motivated introduction to those discoveries, the methods behind them, their consequences, and some of their applications. |
Din interiorul cărții
Rezultatele 1 - 5 din 5
Ne pare rău, conținutul acestei pagini este restricționat.
Ne pare rău, conținutul acestei pagini este restricționat.
Ne pare rău, conținutul acestei pagini este restricționat.
Ne pare rău, conținutul acestei pagini este restricționat.
Ne pare rău, conținutul acestei pagini este restricționat.
Ce spun oamenii - Scrie o recenzie
Cuprins
Some Assumptions | 1 |
An Elementary Introduction | 9 |
Exponential Square 39 | 38 |
Many Dimensions Smoothing | 69 |
TheCalderon Reproducing Formula I | 85 |
TheCalderon Reproducing Formula II | 101 |
TheCalderon Reproducing Formula III | 129 |
Schrodinger Operators 145 | 144 |
Orlicz Spaces | 161 |
Goodbye to Goodλ | 189 |
A Fourier Multiplier Theorem | 197 |
VectorValued Inequalities | 203 |
Random Pointwise Errors | 213 |
219 | |
222 | |
Some Singular Integrals | 151 |
Alte ediții - Afișează-le pe toate
Weighted Littlewood-Paley Theory and Exponential-Square Integrability Michael Wilson Previzualizare limitată - 2007 |